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Abstract. In this paper we derive a new algorithm for constructing a unitary decomposition of
a sequence of matrices in product or quotient form. The unitary decomposition requires only unitary
left and right transformations on the individual matrices and amounts to computing the generalized
singular value decomposition of the sequence. The proposed algorithm is related to the classical
Golub–Kahan procedure for computing the singular value decomposition (SVD) of a single matrix in
that it constructs a bidiagonal form of the sequence as an intermediate result. When applied to two
matrices this new method is an alternative way of computing the quotient and product SVD and is
more economical than current methods.
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Introduction. The two basic unitary decompositions of a matrix A yielding
some spectral information are the Schur form A = UTU∗—where U is unitary and T
is upper triangular—and the singular value decomposition (SVD) A = UΣV ∗—where
U and V are unitary and Σ is diagonal (for the latter A does not need to be square). It
is interesting to note that both forms are usually computed by a QR-like iteration [7].
The SVD algorithm of Golub–Kahan [6] is indeed an implicit QR algorithm applied
to the Hermitian matrix A∗A. When looking at unitary decompositions involving
two matrices, say, A and B, a similar implicit algorithm was given in [10] and is
known as the QZ algorithm. It computes A = QTaZ

∗ and B = QTbZ
∗, where Q

and Z are unitary and Ta and Tb are upper triangular. This algorithm is in fact the
QR algorithm again performed implicitly on the quotient B−1A. The corresponding
decomposition is therefore also known as the generalized Schur form.

When considering the generalized SVD of two matrices, appearing as a quotient
B−1A or a product BA, the currently used algorithm is not of QR type but of a Jacobi
type. The reason for this choice is that Jacobi methods easily extend to products and
quotients. Unfortunately, the Jacobi algorithm typically has a (moderately) higher
complexity than the QR algorithm. Yet, so far, nobody proposed an implicit QR-like
method for the SVD of a product or quotient of two matrices.
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In this paper we show that, in fact, such an implicit algorithm is easy to de-
rive and that it even extends straightforwardly to sequences of products/quotients of
several matrices. Moreover, the complexity will be shown to be lower than for the
corresponding Jacobi-like methods.

1. Implicit SVD. Consider the problem of computing the SVD of a matrix A
that is an expression of the following type:

A = AsK
K · · ·As2

2 ·As1
1 ,(1)

where si = ±1, i.e., a sequence of products or quotients of matrices. For simplicity
we assume that the Ai matrices are square n × n and invertible. It was pointed
out in [3] that one can always perform a preliminary QR-like reduction that extracts
from a sequence of matrices with compatible dimensions another sequence of square
invertible matrices with the same generalized singular values as the original sequence.
We refer to [3] for the details of this reduction and will treat here only the case of
square invertible matrices. While it is clear that one has to perform left and right
transformations on A to get U∗AV = Σ, these transformations will affect only AK

and A1. Beyond this, one can insert an expression Q∗
iQi = In between every pair

A
si+1

i+1 Asi
i in (1). If we also define QK

.
= U and Q0

.
= V , we arrive at the following

expression:

U∗AV = (Q∗
KAsK

K QK−1) · · · (Q
∗
2A

s2
2 Q1) · (Q

∗
1A

s1
1 Q0).(2)

With the degrees of freedom present in these K + 1 unitary transformations Qi at
hand, one can now choose each expression Q∗

iA
si
i Qi−1 to be upper triangular. Note

that the expression Q∗
iA

si
i Qi−1 = T si

i with Ti upper triangular can be rewritten as

Q∗
iAiQi−1 = Ti for si = 1 , Q∗

j−1AjQj = Tj for sj = −1.(3)

From the construction of a normal QR decomposition, it is clear that while making
the matrix A upper triangular, this “freezes” only one matrix Qi per matrix Ai. The
remaining unitary matrix leaves enough freedom to finally diagonalize the matrix A
as well. Since (2) computes the singular values of (1), it is clear that such a result
can be obtained only by an iterative procedure. On the other hand, one intermediate
form that is used in the Golub–Kahan SVD algorithm [6] is the bidiagonalization of A
and this can be obtained in a finite recurrence. We show in the next section that the
matrices Qi in (2) can be constructed in a finite number of steps in order to obtain
a bidiagonal Q∗

KAQ0 in (2). In carrying out this task one should try to do as much
as possible implicitly. Moreover, one would like the total complexity of the algorithm
to be comparable to, or less than, the cost of K singular value decompositions. This
means that the complexity should be O(Kn3) for the whole process.

2. Implicit bidiagonalization. We now derive such an implicit reduction to
bidiagonal form. Below H(i, j) denotes the group of Householder transformations
having (i, j) as the range of rows/columns they operate on. Similarly G(i, i + 1)
denotes the group of Givens transformations operating on rows/columns i and i + 1.
We first consider the case where all si = 1. We thus have only a product of matrices
Ai and in order to illustrate the procedure we show its evolution operating on a
product of three matrices only, i.e., A3A2A1. Below is a sequence of displays of the
matrix product that illustrates the evolution of the bidiagonal reduction. Each display
indicates the pattern of zeros (“0”) and nonzeros (“x”) in the three matrices.
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First perform a Householder transformation Q
(1)
1 ∈ H(1, n) on the rows of A1 and

the columns of A2. Choose Q
(1)
1 to annihilate all but one element in the first column

of A1:











x x x x x

x x x x x

x x x x x

x x x x x

x x x x x





















x x x x x

x x x x x

x x x x x

x x x x x

x x x x x





















x x x x x

0 x x x x

0 x x x x

0 x x x x

0 x x x x











.

Then perform a Householder transformation Q
(1)
2 ∈ H(1, n) on the rows of A2

and the columns of A3. Choose Q
(1)
2 to annihilate all but one element in the first

column of A2:











x x x x x

x x x x x

x x x x x

x x x x x

x x x x x





















x x x x x

0 x x x x

0 x x x x

0 x x x x

0 x x x x





















x x x x x

0 x x x x

0 x x x x

0 x x x x

0 x x x x











.

Then perform a Householder transformation Q
(1)
3 ∈ H(1, n) on the rows of A3.

Choose Q
(1)
3 to annihilate all but one element in the first column of A3:











x x x x x

0 x x x x

0 x x x x

0 x x x x

0 x x x x





















x x x x x

0 x x x x

0 x x x x

0 x x x x

0 x x x x





















x x x x x

0 x x x x

0 x x x x

0 x x x x

0 x x x x











.

Note that this third transformation yields the same form also for the product of
the three matrices:











x x x x x

0 x x x x

0 x x x x

0 x x x x

0 x x x x





















x x x x x

0 x x x x

0 x x x x

0 x x x x

0 x x x x





















x x x x x

0 x x x x

0 x x x x

0 x x x x

0 x x x x











=











x x x x x

0 x x x x

0 x x x x

0 x x x x

0 x x x x











.

At this stage we are interested in the first row of this product (indicated by
boldface x’s above). This row can be constructed as the product of the first row of A3

with the matrices to the right of it, and this requires only O(Kn2) flops. Once this

row is constructed we can find a Householder transformation Q
(1)
0 ∈ H(2, n) operating

on the last (n− 1) elements which annihilates all but two elements (the colon,“:”, is
used as it is in MATLAB):

A3(1, :)A2A1Q
(1)
0 =

[

x x 0 0 0
]

.(4)

This transformation is then applied to A1 only and completes the first stage of the
bidiagonalization since
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Q
(1)∗
K

AQ
(1)
0 =











x x 0 0 0

0 x x x x

0 x x x x

0 x x x x

0 x x x x











.

The second stage of the bidiagonalization is analogous to the first; it differs only
in that the transformations operate only on rows/columns 2 to n. The Householder

transformations Q
(2)
i ∈ H(2, n) for 1 ≤ i ≤ 3 are chosen to eliminate elements 3 to

n in the second columns of Ai in the manner described above. The transformation
Q

(2)
0 ∈ H(3, n) operates on the last (n− 2) elements of the second row of the product

and annihilates all but two elements:

A3(2, :)A2A1Q
(2)
0 =

[

0 x x 0 0
]

.(5)

This transformation is applied to A1 only, completing the second step of the bidiag-
onalization of A:

Q
(2)∗
K

Q
(1)∗
K

AQ
(1)
0 Q

(2)
0 =











x x 0 0 0

0 x x 0 0

0 0 x x x

0 0 x x x

0 0 x x x











.

It is now clear from the context how to proceed further with this algorithm to
obtain after n− 1 stages:










x x x x x

0 x x x x

0 0 x x x

0 0 0 x x

0 0 0 0 x





















x x x x x

0 x x x x

0 0 x x x

0 0 0 x x

0 0 0 0 x





















x x x x x

0 x x x x

0 0 x x x

0 0 0 x x

0 0 0 0 x











=











x x 0 0 0

0 x x 0 0

0 0 x x 0

0 0 0 x x

0 0 0 0 x











.

Note that we never construct the whole product A = A3A2A1, but rather compute

one of its rows when needed for constructing the transformations Q
(i)
0 . The only

matrices that are kept in memory and updated are the Ai matrices and possibly QK

and Q0 if we require the singular vectors of A afterwards.
The complexity of this bidiagonalization step is easy to evaluate. Each matrix

Ai gets pre- and postmultiplied with essentially n Householder transformations of
decreasing range. For updating all Ai we therefore need 10Kn3/3 flops, and for
updating QK and Q0 we need 4n3 flops. For constructing the required row vectors of
A we need (K− 1)n3/3 flops. Overall we thus need on the order of 11Kn3/3 flops for
the construction of the triangular Ti and 4n3 for the outer transformations QK and
Q0. Essentially this is 11n3/3 flops per updated matrix.

If we now have some of the si = −1, we cannot use Householder transformations
anymore on all matrices. Indeed, in order to construct the rows of A when needed,
the matrices Ai for which si = −1 have to be triangularized first, say, with a QR fac-
torization. The QR factorization is performed in an initial step and uses Householder
transformations. From there on the same procedure as above is followed, but this im-
plies using Givens rotations in certain steps of the bidiagonalization. For simplicity,
we illustrate this on a matrix A = A3A

−1
2 A1. We first apply a left transformation
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Q
(0)
2 (using a sequence of Householder transformations) that triangularizes A2 from

the left and also apply this to the rows of A1. The resulting triple then has the form











x x x x x

x x x x x

x x x x x

x x x x x

x x x x x





















x x x x x

0 x x x x

0 0 x x x

0 0 0 x x

0 0 0 0 x





















x x x x x

x x x x x

x x x x x

x x x x x

x x x x x











.

We then apply a unitary transformation Q
(1)
1 to the rows of A1 to eliminate

elements 2 to n in its first column using Givens transformations G1 ∈ G(n − 1, n)
until Gn−1 ∈ G(1, 2). Below we indicate in which order these zeros are created in the
first column of A1 by their index:











x x x x x

x x x x x

x x x x x

x x x x x

x x x x x





















x x x x x

0 x x x x

0 0 x x x

0 0 0 x x

0 0 0 0 x





















x x x x x

04 x x x x

03 x x x x

02 x x x x

01 x x x x











.

These transformations also have to be applied to the left of A2, but the use of
Givens rotations allows us to update the triangularized matrix A2, while keeping it
upper triangular: each time a Givens rotation applied to the left of A2 destroys its
triangular form, another Givens rotation is applied to the right of A2 in order to
restore its triangular form. (The same technique is used, for instance, in keeping

the B matrix upper triangular in the QZ algorithm applied to B−1A.) Let Q
(1)
2

be the product of the Givens rotations applied to the right of A2, then Q
(1)
2 also

has to be applied to the right of A3. Finally, for the column transformation Q
(1)
3 of

A3 eliminating elements 2 to n of its first column, we can again use a Householder
transformation H5 ∈ H(1, n). After this fifth transformation, the resulting triple has
the form











x x x x x

05 x x x x

05 x x x x

05 x x x x

05 x x x x





















x x x x x

0 x x x x

0 0 x x x

0 0 0 x x

0 0 0 0 x





















x x x x x

0 x x x x

0 x x x x

0 x x x x

0 x x x x











,

which clearly has a first column with only its leading element different from 0. Its
first row can easily be constructed, and we then apply a Householder transformation

Q
(1)
0 ∈ H(2, n) annihilating all but two elements as indicated in (4). This completes

the first stage of the bidiagonalization of A = A3A
−1
2 A1. Subsequent steps are similar

but operate on matrices of decreasing dimensions.
Notice that all transformations Qi and Qi−1 applied to a matrix Ai with in-

dex si = −1 have to be of Givens type, which require more flops than Householder
transformations for the same number of annihilated elements. So the more negative
exponents we have, the more expensive the overall algorithm becomes. Without loss
of generality, we can assume that at most half of the indices are equal to −1, since
otherwise we can compute the SVD of A−1 rather than that of A (all matrices Ai

were assumed to be invertible). The situation with the highest computational com-
plexity is thus when every other index si is negative, since then all transformations
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but one have to be of Givens type. Let us analyze the case where K is even and
s2i = −1, s2i−1 = 1, i = 1, . . . , K

2 . The preliminary QR reduction of the matrices

A2i requires 4
3n

3 K
2 flops and 2n3 K

2 flops for also updating the matrices A2i−1 with

these transformations. From there on, each matrix undergoes n(n−1)
2 Givens rotations

on the left and on the right. For the triangular matrices A2i this requires a total of
3n2 K

2 flops, whereas for the (originally dense) matrices A2i−1 this requires a total of

5n3 K
2 flops. For constructing the required row vectors of A we need (K−1)n3/3 flops

as before. Finally, updating the matrix Q0 via Givens transformations and QK via
Householder transformations requires 2n2 and 3n3 flops, respectively. The worst-case
complexity of the general case is thus 6n3K flops for obtaining the triangular matrices
Ti and 5n3 flops for the outer transformations Q0 and QK . This is about 60% more
than for the product case.

3. Error analysis. In the previous section we showed how to obtain an esti-
mate of a bidiagonal decomposition of the matrix product/quotient. We now turn to
the problem of obtaining accurate estimates of the singular values. This warrants a
discussion of the errors committed in the bidiagonalization step.

The use of Householder and Givens transformations for all operations in the
bidiagonalization step guarantees that the obtained matrices Ti in fact correspond to
slightly perturbed data as follows:

Ti = Q∗
i (Ai + δAi)Qi−1, si = 1, Tj = Q∗

j−1(Aj + δAj)Qj , sj = −1,(6)

where

‖δAi‖ ≤ εcn‖Ai‖ , ‖Q∗
iQi − In‖ ≤ εdn,(7)

with ε the machine precision and cn, dn moderate constants depending on the problem
size n. This is obvious since each element transformed to zero can indeed be put equal
to zero without affecting the ε bound (see [11], [7]).

The situation is different for the elements of A since they are not stored explicitly
in the computer. How does one proceed further to compute the generalized singular
values of A? Once the triangular matrices Ti are obtained, it is easy and cheap to
reconstruct the bidiagonal:

T sk
K · · ·T s2

2 · T s1
1 = B =



















q1 e2 o1,3 . . . o1,n

q2 e3
. . .

...
. . .

. . . on−2,n

. . . en
qn



















,(8)

and then compute the singular values of the bidiagonal in a standard way. The
diagonal elements qi are indeed just a product of the corresponding diagonal elements
of the Tj matrices, possibly inverted:

qi = tsKKi,i
· · · ts22i,i

· ts11i,i
,

and the off-diagonal elements ei can be computed from the corresponding 2 × 2 di-
agonal blocks (with index i − 1 and i) of the Tj matrices. It is clear that the qi can
be computed in a backward stable way since all errors can be superimposed on the
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diagonal elements tji,i of the matrices Tj . For the errors incurred when computing
the ei one needs a more detailed analysis. We show below that the backward errors
can be superimposed on the off-diagonal elements tji−1,i

of Tj without creating any
conflicts with previously constructed backward errors, and we derive bounds for these
backward errors. From the vector recurrence

[

e
q

]

:=

[

tji−1,i−1
tji−1,i

0 tji,i

]sj

·

[

e
q

]

(9)

we easily derive the following algorithm used for computing qi and ei for i = 1, . . . , n.
q := 1; e := 0;

for j = 1 : K
if sj = 1, then e := e ∗ tji−1,i−1

+ q ∗ tji−1,i
; q := q ∗ tji,i ;

else q := q/tji,i ; e := (e− q ∗ tji−1,i
)/tji−1,i−1

;
end
qi := q; ei := e;

Note that for i = 1 the same recurrence holds without the expressions involving e.
From these recurrences it is clear that the calculation of qi involves one flop per step
j and hence a total of K rounding errors which can be superimposed on the diagonal
elements tji,i :

qi = comp(tsKKi,i
· · · ts11i,i

)

= t
sK
Ki,i

· · · t
s1
1i,i

with tji,i = tji,i(1 + εi,j), |εi,j | < ε
(10)

with comp denoting a floating point operator. For the calculation of ei there are 3
flops per step j and hence a total of 3K roundings which have to be superimposed on
the tji−1,i

elements. Fortunately, ej is a sum of K terms which contain each a different

element tji−1,i
as a factor. We illustrate this for K = 4 and sj = 1, highlighting the

relevant elements:

ei = comp(t4i−1,i
· t3i,i

· t2i,i
· t1i,i

+ t4i−1,i−1
· t3i−1,i

· t2i,i
· t1i,i

+ t4i−1,i−1
· t3i−1,i−1

· t2i−1,i
· t1i,i

+ t4i−1,i−1
· t3i−1,i−1

· t2i−1,i−1
· t1i−1,i

).

(11)

The 3K rounding errors can thus easily be superimposed on these different elements
tji−1,i

, j = 1, . . . ,K. But since we have already superimposed errors on the all-
diagonal elements tji,i we have to add these perturbations here as well. For sj = 1
we thus have

ei = t4i−1,i
· t3i,i

· t2i,i
· t1i,i

+ t4i−1,i−1
· t3i−1,i

· t2i,i
· t1i,i

+ t4i−1,i−1
· t3i−1,i−1

· t2i−1,i
· t1i,i

+ t4i−1,i−1
· t3i−1,i−1

· t2i−1,i−1
· t1i−1,i

,

(12)

where (K − 1) additional roundings are induced for each factor. Therefore, we have
tji−1,i

= tji−1,i
(1 + ηi,j), |ηi,j | < (4K − 1)ε/(1 − (4K − 1)ε). When some of the

sj = −1 the above expression is similar: the tji,i then appear as inverses, some +
signs change to − signs, and an additional factor 1/(tji−1,i−1

tji,i) appears in the jth
term if sj = −1. So in the worst case (K + 1) additional roundings are introduced
for each factor and the obtained bound is then |ηi,j | < (4K + 1)ε/(1− (4K + 1)ε). In
the worst case the errors yield a backward perturbation ‖δTj‖ which is thus bounded
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by 5Kε‖Tj‖ and hence much smaller than the errors δAj incurred in the triangu-
larization process. The perturbation effect of computing the elements qi and ei is
thus negligible compared to that of the triangularization. We thus showed that the
computed bidiagonal corresponds exactly to the bidiagonal of the product of slightly
perturbed triangular matrices Tj , that in turn satisfy the bounds (6)–(7). Unfortu-
nately, nothing of the kind can be guaranteed for the elements oi,j in (8), which are
supposed to be zero in exact arithmetic. Notice that the element ei+1 is obtained as
the norm of the vector on which a Householder transformation is applied:

|ei+1| = ‖T sK
K (i, i : n)T

sK−1

K−1 (i : n, i : n) · · ·T s1
1 (i : n, i + 1 : n)‖,

where we used the MATLAB notation for subarrays: T s1
1 (i : n, i + 1 : n) is thus the

submatrix of T s1
1 with row indices i to n and column indices i + 1 to n. If all si = 1

we can obtain by straightforward perturbation results of matrix vector products, a
bound of the type

|oi,j | ≤ εcn‖TK(i, i : n)‖ · ‖TK−1(i : n, i : n)‖ · · · ‖T1(i : n, i : n)‖.

If not all si = 1 we need to also use perturbation results of solutions of systems of
equations, since we need to evaluate the last n− i components of the vector e∗i T

sK
K (i :

n, i : n)T
sK−1

K−1 (i : n, i : n) · · ·T s1
1 (i : n, i : n) and this requires a solution of a triangular

system of equations each time a power sj = −1 is encountered. In this case the bound
would become

|oi,j | ≤ εcn‖T
sK
K (i, i : n)‖ · ‖T

sK−1

K−1 (i : n, i : n)‖ · · · ‖T s1
1 (i : n, i : n)‖κ,

where κ is the product of all condition numbers of the inverted triangular systems
(and hence much larger than 1). These are much weaker bounds than asking the off-
diagonal elements of A to be ε smaller than the ones on the bidiagonal. This would
be the case, e.g., if instead we had

|oi,j | ≤ εcn‖T
sK
K (i, i : n)T

sK−1

K−1 (i : n, i : n) · · ·T s1
1 (i : n, i + 1 : n)‖ = εcn|ei+1|.

Such a bound would guarantee high relative accuracy in the singular values computed
from the bidiagonal only [4]. Hence, this is the kind of result one would hope for.
These two bounds can in fact be very different when significant cancellations occur
between the individual matrices, e.g., if

‖A‖ << ‖AsK
K ‖ · · · ‖As2

2 ‖ · ‖As1
1 ‖.

One could observe that the bidiagonalization procedure is in fact a Lanczos proce-
dure [6]. Therefore, there is a tendency to find first the dominant directions of the
expression AsK

K · · ·As1
1 and hence also those directions where there is less cancella-

tion between the different factors. We will see in the examples below that such a
phenomenon indeed occurs which is a plausible explanation for the good accuracy
obtained. One way to test the performance of the algorithm in cases with very small
singular values is to generate powers of a symmetric matrix A = SK . The singular
values will be the powers of the absolute values of the eigenvalues of S:

σi(A) = |λi(S)|K ,

and hence will have a large dynamic range. The same should be true for the bidiagonal
of A and the size of the oi,j will then become critical for the accuracy of the singular
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values when computed from the bidiagonal elements qi, ei. This and several other
examples are discussed in the next section. There we observe a very high relative
accuracy even for the smallest singular values. The only explanation we can give
for this is that as the bidiagonalization proceeds, it progressively finds the largest
singular values first and creates submatrices that are of smaller norm. These then
do not really have cancellation between them, but instead the decreasing size of the
bidiagonal elements is the result of decreasing elements in each transformed matrix
Ai. In other words, a grading is created in each of the transformed matrices. We
believe this could be explained by the fact that the bidiagonalization is a Lanczos
procedure and that such grading is often observed there when the matrix has a large
dynamic range of eigenvalues. In practice it is of course always possible to evaluate
bounds for the elements |oi,j | and thereby obtain estimates of the accuracy of the
computed singular values.

The consequence of the above is that the singular values of such sequences can be
computed (or better, “estimated”) at high relative accuracy from the bidiagonal only!
Notice that the bidiagonalization requires 4 to 6Kn3 flops but that the subsequent
SVD of the bidiagonal is essentially free since it is O(n2).

4. Singular vectors and iterative refinement. If one wants the singular
vectors as well as the singular values at a guaranteed accuracy, one can start from the
bidiagonal B as follows. First compute the bidiagonal,

B = Q∗
KAQ0 = T sK

K · · ·T s2
2 · T s1

1 ,

and then the SVD of B,

B = UΣV ∗,

where we choose the diagonal elements of Σ to be ordered in decreasing order. We
then proceed by propagating the transformation U (or V ) and updating each Ti so
that they remain upper triangular. Since the neglected elements oi,j were small, the
new form

Q̂∗
KAQ̂0 = T̂ sK

K · · · T̂ s2
2 · T̂ s1

1

will be upper triangular, and nearly diagonal. This is the ideal situation to apply one
sweep of Kogbetliantz’s algorithm. Since this algorithm is quadratically convergent
when the diagonal is ordered [2], one sweep should be enough to obtain ε-small off-
diagonal elements.

The complexity of this procedure is as follows. If we use only Givens transforma-
tions, we can keep all matrices upper triangular by a subsequent Givens correction.
Such a pair takes 6n flops per matrix and we need to propagate n2/2 of those. That
means 3n3 per matrix. The cost of one Kogbetliantz sweep is exactly the same since
we propagate the same amount of Givens rotations. We therefore arrive at the fol-
lowing total count for our algorithm:

4 to 6Kn3 for triangularizing Ai → Ti,
4 to 5n3 for constructing QK and Q0,
8n3 for computing U and V ,
3Kn3 for updating Ti → T̂i,
3Kn3 for one last Kogbetliantz sweep.

The total amount of flops after the bidiagonalization is thus comparable to applying 2
Kogbetliantz sweeps, whereas the Jacobi-like methods typically require 5 to 10 sweeps!



10 GENE GOLUB, KNUT SØLNA, AND PAUL VAN DOOREN

Moreover, our method allows us to select a few singular values and only compute the
corresponding singular vectors. The matrices QK and Q0 can be stored in factored
form and inverse iteration performed on B to find its selected singular vector pairs
and then transformed back to pairs of A using QK and Q0.

5. Numerical examples. Computing the SVD of a general product/quotient
of matrices is, as suggested above, a delicate numerical problem. In this section we
analyze the accuracy of the QR-like algorithm described in this paper using several
examples of varying degree of difficulty. The examples are chosen in order to illustrate
the following points already discussed in the paper.

(a) Implicit methods are more reliable than explicit methods. This is of course
well known, but we illustrate it with some striking examples.

(b) The bidiagonal computed by the QR-like method yields singular values com-
puted to high relative accuracy even when their dynamical range is very large.

(c) The bidiagonal has a typical “graded” structure when the singular values
have a wide dynamical range and its “off-bidiagonal” elements are negligible
with respect to the bidiagonal elements in the same row. This is due to its
connection to the Lanczos procedure as discussed earlier.

(d) The connection with the Lanczos procedure also allows us to terminate the
bidiagonalization early and yet has a good estimate of the dominant singular
values.

Points (a)–(d) illustrate the good (relative) accuracy that can be obtained from this
procedure even without using iterative refinement based on Kogbetliantz’s algorithm.
The following points now compare the QR-like and Kogbetliantz approaches.

(e) The bidiagonalization and Kogbetliantz methods have comparable accuracy
in “difficult” examples with strong cancellation in the product.

(f) The typical number of Kogbetliantz steps (6 to 10) needed for convergence
yields a much slower method than mere bidiagonalization. Moreover, the
results are comparable, even when the Kogbetliantz iteration is continued
further.

(g) The accuracy obtained from the bidiagonal only is already better on average
than that of Kogbetliantz.

Finally, we illustrate that good (relative) accuracy is obtained also for a matrix quo-

tient.
(h) The accuracy obtained by bidiagonalization of a matrix quotient is high, even

when compared to the accuracy obtained if the inverted factors are explicitly
known.

These points illustrate the power of this QR-like method. Note that in all examples
we use only the basic part of the algorithm without the iterative refinement step. All
calculations were carried out in MATLAB on a Silicon Graphics Indigo workstation
with IEEE floating point standard. For computing the singular values of the computed
bidiagonal we use the method due to Fernando and Parlett [5].

(a) Implicit versus explicit. Let us consider the following products:

A1[n,m] = Tm
n ,

where Tn is a n×n symmetric Toeplitz matrix whose first column is [2,−1, 0, 0, . . . , 0]
(singular values and singular vectors of such matrices are known [8]). Since it contains
only integers we can form these powers of Tn without any rounding errors, which is
important for our comparison. The accuracy obtained by computing the SVD of this
explicitly formed product is displayed in Figure 1. The interpretation of the figure is
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a: Accuracy singular values.
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b: Accuracy singular vectors.
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c: Accuracy singular value.
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d: Accuracy singular vectors.

Fig. 1. The relative accuracy obtained by computing the SVD for the explicitly formed product
of Toeplitz matrices. In (a) and (b) solid, dashed, and dotted lines correspond to A1[n,m] for n = 10
and m ∈ {8, 16, 32}; in (c) and (d), n ∈ {10, 20, 40} and m = 8. The lines interpolate the relative
accuracies for the different singular values.

as follows. Figures 1(a) and 1(b) correspond to n = 10 and m ∈ {8, 16, 32}, whereas
Figures 1(c) and 1(d) correspond to n ∈ {10, 20, 40} and m = 8. The associated results
are indicated by the solid, dashed, and dotted lines, respectively. Notice that each line
corresponds to a different range of singular values as expected for matrices Tm

n with
different values of m and n. In Figures 1(a) and 1(c) we plot the relative accuracy of
the singular values as a function of the actual magnitude of the singular value. The
lines interpolate the observed relative accuracies, that is, the values |σi − σ̂i|/σi. In
Figures 1(b) and 1(d) we plot the maximum absolute error in the left singular vector
elements, that is, maxj [|uji − ûji|], with uji being the elements of the ith singular
vector, also as a function of the magnitude of the corresponding singular value. From
the figure it is clear that the relative accuracy of the computed decomposition is
quickly lost as we form powers of the matrix. Moreover, the situation is aggravated
as we increase the dimension, and hence the condition number, of the matrix. The
explanation lies of course in the fact that roundoff errors in a matrix A are typically
proportional to ε||A||. For the product A1[n,m] this tends to have a catastrophic effect
on the accuracy of the smallest singular values since they are smaller than ε||A1||.

Let us now use the QR-like SVD algorithm. The result is shown in Figure 2 and
illustrates that we have obtained a relative accuracy which is essentially independent
of the magnitude of the associated singular value. This shows the need for implicit
methods.

(b) Relative accuracy of implicit methods. A nonsymmetric example along the
same vein is given in Figure 3. The interpretation of the figure is as for Figure 2, but
now we consider the product
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a: Accuracy singular value.
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b: Accuracy singular vector.
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c: Accuracy singular value.
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d: Accuracy singular vector.

Fig. 2. Relative accuracy of the SVD estimate obtained by the QR-like algorithm for the product
of Toeplitz matrices. In (a) and (b) solid, dashed, and dotted lines correspond to A1[n,m] for n = 10
and m ∈ {8, 16, 32}; in (c) and (d), n ∈ {10, 20, 40} and m = 8. Note that also the smallest singular
values are computed with high relative accuracy.
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a: Accuracy singular value.
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b: Accuracy singular vector.
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c: Accuracy singular value.
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Fig. 3. Relative accuracy of the SVD estimate obtained by the QR-like algorithm for the product
of nonsymmetric matrices. In (a) and (b) solid, dashed, and dotted lines correspond to A2[n,m] for
n = 10 and m ∈ {8, 16, 32}; in (c) and (d), n ∈ {10, 20, 40} and m = 8.
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b: Magnitude bidiagonal.

Fig. 4. Grading in the bidiagonal decomposition computed by the QR-like algorithm. Figure
(a) corresponds to A1[20, 16] and (b) to A2[20, 16]. The ∗’s show the magnitude of the diagonal
coefficients, the o’s the magnitude of the upper bidiagonal coefficients.

A2[n,m] = (Dn D∗
n)m.

Thus, there are 2m matrices in the matrix product. The matrix Dn is obtained by
explicitly forming

Dn ≡ Un Σn V ∗
n ,(13)

where the matrices Un and Vn are randomly chosen orthogonal matrices. They are
defined by the singular vectors of a matrix with independent mean zero unit variance
Gaussian entries. Furthermore, Σn is the leading part of a 10k× 10k diagonal matrix
with diagonal equal to the Kronecker product:

[10, 9.9, 9, 8, 7, 6, 5, 4, 3, 2] ⊗ [10−1, 10−2, . . . , 10−k].

The motivation for choosing the product in this way is that we obtain an example in
which the matrices involved are nonsymmetric and for which we “know” the actual
singular values and can examine the obtained relative accuracy. The result is much as
above. Using the implicit procedure for computing the singular values returns singular
values whose relative accuracies are rather insensitive to the actual magnitude of the
corresponding singular value.

(c) Graded bidiagonal. That the merits of the algorithm can be understood in
terms of the Lanczos connection is confirmed by the next example explained in Figure
4. Here we have plotted the magnitude of the coefficients of the computed bidiagonal
for the products A1[20, 16] and A2[20, 16], respectively, in Figures 4(a) and 4(b). The
∗’s show the absolute values of the diagonal coefficients and the o’s the absolute values
of the upper bidiagonal coefficients in the computed bidiagonal. We see that in both
cases a grading has indeed been obtained. The algorithm picks out the dominant
directions first, leading to a grading in the computed decomposition. The “effective
condition number” of remaining subproblems are therefore successively reduced, and
the associated singular values can apparently be obtained with high relative accuracy.

The high accuracy obtained above suggests that the “off-bidiagonal” elements in
the transformed product are indeed small relative to the bidiagonal. This is confirmed
by the next figure. In Figure 5 we plot, indicated by ∗, the norm of the off-bidiagonal
elements normalized by the norm of the bidiagonal elements. That is, after the trans-
formation to upper triangular form we explicitly form the product of the matrices in
the product and compute for each row j, ||oj,(j+2):n||/||oj,j:(j+1)||, with oi,j being the



14 GENE GOLUB, KNUT SØLNA, AND PAUL VAN DOOREN

0 5 10 15 20
10

–17

10
–�16

10
–�15

10
–�14

10
–�13

10
–�12

singular� value/row #

re
la

tiv
e 

er
ro

r

a: Accuracy bidiagonal.
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b: Accuracy bidiagonal.

Fig. 5. Relative accuracies of the bidiagonal elements (∗) and of the computed singular values
(o). Figure (a) corresponds to A1[20, 16] and (b) to A2[20, 16].
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Fig. 6. Accuracy of estimate of dominant singular value obtained from leading part of computed
bidiagonal. The accuracy is plotted as a function of the dimension of the leading submatrix. Figure
(a) corresponds to A1[80, 16] and (b) to A2[80, 16].

elements in the computed product. In exact arithmetic this quantity should be zero.
The o’s in the figure are the relative accuracies in the computed singular values. Note
that the grading and relative smallness of the off-bidiagonal elements make it possible
to compute even the smallest singular values with high relative accuracy.

(d) Dominant singular value. A consequence of the Lanczos connection is fur-
thermore that we can obtain good estimates for the dominant singular values of the
product without computing the full bidiagonal. This is illustrated in Figure 6. Here
we plot the estimate of the dominant singular value we obtain by computing the corre-
sponding singular value for the leading parts of the computed bidiagonal, B̂(1 : i, 1 : i).
We plot the relative accuracy of this estimate as a function of i in Figures 6(a) and
6(b), corresponding to the products A1[80, 16] and A2[80, 16], respectively. The plots
show that we need compute only a part of the bidiagonal in order to obtain a good
estimate of the dominant singular value.

(e) Examples with strong cancellation. Here we consider examples with a sig-
nificant cancellation in the product. That is, a subsequence of the matrices in the
product is associated with a large dynamic range relative to that of the product whose
associated singular values might be only mildly, or not at all, graded. The following
example illustrates this:

A3[10,m] = Dm
10 D−m

10 ,

A4[10,m] = (D10 D−1
10 )m,
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b: Accuracy singular value.
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c: Accuracy singular value.
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d: Accuracy singular value.

Fig. 7. The figure compares the accuracy of the computed SVD using, respectively, the QR-like
(∗) and the Kogbetliantz (o) algorithms. The considered matrix products exhibit strong cancellation.
Figures (a) and (b) correspond to A3[n,m] and (c) and (d) to A4[n,m]. In (a) and (c), n = 10
and m ∈ {2, 4, 8, 16, 32, 64}; in (b) and (d), n ∈ {10, 14, 18, 22, 26, 30} and m = 8. The QR-
like algorithm provides accurate singular value estimates at a lower computational cost than the
Kogbetliantz algorithm.

with D10 defined as in (13). Note that in this example we compute D−1
10 explicitly and

use the product form of the algorithm. In Figure 7 subplots (a) and (b) correspond
to A3 and (c) and (d) to A4. For the various product sizes we plot the maximum
relative error over the computed singular values. We do so as a function of the
“product condition number,” defined as the product of the condition numbers of the
matrices involved, in this case κ2m

D . In Figures 7(a) and 7(c) we let n = 10 and m ∈
{2, 4, 8, 16, 32, 64}, whereas in Figures 7(b) and 7(d) we let n ∈ {10, 14, 18, 22, 26, 30}
and m = 8. Note that for both of the above matrix products the product condition
number is much larger than its actual condition number. Figures 7(a) and 7(b)
show that for the matrix products which are associated with a significant cancellation
there is a loss in relative accuracy. The o’s in the plot correspond to computing the
decomposition by the Kogbetliantz algorithm, fixing the number of sweeps to 12 to
avoid issues of convergence tests. Note that the accuracy obtained thereby is not much
better than that obtained by the bidiagonalization part of the QR-like algorithm, that
is, without iterative refinement.

(f) Convergence and complexity. We next turn to the special but important
case when m = 2 and compare the performance of the algorithm with that of the
Kogbetliantz algorithm. In Figures 8(a) and 8(b) we consider the product A2[40, 1].
The dashed lines correspond to the relative accuracy obtained by 2, 4, 6, and 10 sweeps
of the Kogbetliantz algorithm. The relatively slow convergence of some singular values
corresponds to those being closely spaced. Note that even 10 sweeps of Kogbetliantz’s
algorithm do not return an approximation with accuracy beyond that obtained by the
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Fig. 8. Convergence of Kogbetliantz algorithm when computing the SVD of the pair of matrices
defined by A2[40, 1]. The accuracies after 2, 4, 6, and 10 sweeps are shown. The bottom solid line
shows the accuracy obtained with the QR-like algorithm without iterative refinement.
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Fig. 9. Comparison of accuracy of the computed SVD obtained, respectively, by the QR-like
and the Kogbetliantz algorithms for the square of a collection of random matrices. For each matrix
realization the cross is the maximum relative error with the Kogbetliantz algorithm over the maximum
relative error for the QR-like algorithm.

QR-like SVD algorithm without iterative refinement as shown by the solid line.
(g) Comparison of accuracy. The two plots in Figure 9 are obtained as follows.

We consider the products defined by

A5[n, 2] = Nn N∗
n

with Nn being an n×n random matrix whose coefficients are normally distributed and
with n ∈ {20, 40, 60, 80}. The SVD was first computed (via MATLAB) and we then
reconstructed Nn from this SVD. Hence it is reasonable to assume that the singular
values of Nn and A5[n, 2] are known “exactly.” Let σ̂i and σ̃i represent the estimates
of the singular values associated with, respectively, the QR-like and the Kogbetliantz
algorithms. In the latter case we used 10 sweeps, whereas in the former we did
not include iterative refinement. Similarly let ûij and ũij represent the coefficients
in the left singular vectors. We then plot the ratio maxi[|σi − σ̃i|/σi]/maxi[|σi −
σ̂i|/σi] in Figure 9(a) and the ratio maxij [|uij − ũij |]/maxij [|uij − ûij |] in Figure
9(b). The +’s correspond to different realizations of the matrix Nn. We see that the
QR-like algorithm typically yields a more accurate approximation despite its lower
computational cost.

(h) Example with matrix quotients. In this last example we compute the SVD
of matrix quotients involving inverted matrices. As described above, we then have
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Fig. 10. The figure compares the accuracy of the computed SVD when the QR-like algorithm
based on, respectively, the quotient representation (+) and the product representation (∗) of the
matrix is being used. Figures (a) and (b) correspond to A6[n,m] and (c) and (d) to A7[n,m]. In
(a) and (c), n = 10 and m ∈ {2, 4, 8, 16, 32} and in (b) and (d), n ∈ {10, 14, 18, 22, 26} and m = 8.
Note that the accuracy obtained from the quotient representation is similar to the accuracy obtained
from the product representation.

to carry out an initial step in the bidiagonalization where the QR factorizations of
the inverted matrices are computed. We construct the matrix quotients such that we
explicitly can compute the inverses and compare the accuracy of the product version of
the algorithm, based on these explicitly computed inverses, with the quotient version.

First, define the matrix quotient A6:

A6[n,m] = A−1
1 A−1

2 · · ·A−1
m Am+1Am+2 · · ·A2m,

where

Ai = Q(i)
n Σ−1

n Q(i−1)∗
n ,

Am+i = Q(m+i−1)
n ΣnQ

(m+i)∗
n

for 1 ≤ i ≤ m and with Σn defined as in (13). Moreover, the Q
(i)
n are independent

random orthogonal n×n matrices. As above these are defined by the singular vectors
of a matrix with independent mean zero unit variance Gaussian entries.

Second, define the matrix quotient A7:

A7[n,m] = A−1
1 A2A

−1
3 · · ·A2m−2A

−1
2m−1A2m

with

A2i−1 = Q(2i−1)
n Σ−1

n Q(2i−2)∗
n ,

A2i = Q(2i−1)
n ΣnQ

(2i)∗
n
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Fig. 11. The figure compares the accuracy of the computed SVD when the QR-like algorithm
based on, respectively, the quotient representation (+) and the product representation (∗) of the
matrix is being used. The considered matrix quotients exhibit strong cancellation. Figures (a)
and (b) correspond to A3[n,m] and (c) and (d) to A4[n,m]. In (a) and (c), n = 10 and m ∈
{2, 4, 8, 16, 32, 64} and in (b) and (d), n ∈ {10, 14, 18, 22, 26, 30} and m = 8.

for 1 ≤ i ≤ m and with Σn and Q
(i)
n defined as above. Note that these quotients are

associated with a large dynamic range.

The resulting relative accuracy obtained when varying the matrix dimension and
the number of matrices in the quotient is shown in Figure 10. Figures 10(a) and
10(b) correspond to the quotient A6 and Figures 10(c) and 10(d) correspond to the
quotient A7. In Figures 10(a) and 10(c), n = 10 and m ∈ {2, 4, 8, 16, 32}, whereas
in Figures 10(b) and 10(d), n ∈ {10, 14, 18, 22, 26} and m = 8. The +’s show the
accuracy obtained with the QR-like algorithm based on the quotient and without

iterative refinement. The ∗’s show the accuracy obtained with the product form of
the QR-like algorithm without iterative refinement; note that in this case the inverses
are explicitly computed. We see that the relative accuracy obtained when we do not
assume knowledge of the inverses is comparable to, or even somewhat better than,
the accuracy obtained if these are known!

Finally, reconsider the matrices of example (e) that exhibit strong cancellation.
We compute as above the decomposition based on both the product form and the
quotient form. The result is shown in Figure 11. Figures 11(a) and 11(b) correspond
to the quotient A3 and Figures 11(c) and 11(d) correspond to the quotient A4. In
Figures 11(a) and 11(c), n = 10 and m ∈ {2, 4, 8, 16, 32, 64}, whereas in Figures 11(b)
and 11(d), n ∈ {10, 14, 18, 22, 26, 30} and m = 8. The figure shows that computation
based on the quotient form gives a relative accuracy that is in general somewhat
better than the accuracy based on the product form, at the cost of a slightly higher
flop count.
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6. Concluding remarks. The algorithm presented in this paper nicely comple-
ments the unitary decompositions for sequences of matrices defined for the general-
ized QR [3] and Schur decompositions [1]. These decompositions find applications in
sequences of matrices defined from discretizations of ordinary differential equations
occurring, for instance, in 2-point boundary value problems [9] or control problems
[1]. We expect that they will lead to powerful tools for analyzing as well as solving
problems in these application areas.

We want to stress here that in all examples it turned out to be sufficient to
compute the bidiagonal B of the expression AsK · · ·As1 and then the singular values
of B, without any further iterative refinement. This is rather surprising. The bounds
obtained on the accuracy of the bidiagonal are much worse than what was observed
in the examples. This point and the connection to the Lanczos process need further
analysis. That we get accurate approximations for the leading order bidiagonals might
be useful when solving ill-posed or inverse problems.

The main advantage of the new method lies exactly in the fact that this bidiagonal
is so accurate. If no iterative refinement is needed, then the method requires 5 to 10
times less flops than Kogbetliantz! If iterative refinement is needed, then the method
should still be superior since the work then amounts essentially to the work of two
Kogbetliantz steps.

Finally, we point out that there is recent work on computing singular values to
high relative accuracy via the Kogbetliantz algorithm. This work is based on extract-
ing particular scalings from the factors. So far this has been applied to problems
involving three factors only. Extensions to several matrices and whether these meth-
ods perhaps could be combined with the bidiagonal approach in an advantageous way
are still open problems. Those methods and the ideas developed in this paper are, we
believe, related. In both methods grading in the factors, obtained either explicitly or
implicitly, is important.
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